Laplace Transforms

Μάθημα 6° (Αναπλήρωση 13-4-2020)

Επανάληψη

Laplace transforms

The Laplace transform of an expression f(t) is denoted by $L\{f(t)\}$ and is defined as the semi-infinite integral

$$L\{f(t)\} = \int_{t=0}^{\infty} f(t)e^{-st} dt$$
 (1)

$$L\{f(t)\} = \int_{t=0}^{\infty} f(t)e^{-st} dt = F(s)$$

Τυπολόγιο

$$L\{a\} = \frac{a}{s}; \qquad L\{e^{at}\} = \frac{1}{s-a}; \qquad L\{t^n\} = \frac{n!}{s^{n+1}}$$

$$L\{\sin at\} = \frac{a}{s^2 + a^2}; \qquad L\{\cos at\} = \frac{s}{s^2 + a^2}$$

$$L\{\sinh at\} = \frac{a}{s^2 - a^2}; \qquad L\{\cosh at\} = \frac{s}{s^2 - a^2}$$

Θεωρήματα

(2) The transform of an expression that is multiplied by a constant is the constant multiplied by the transform of the expression. That is

$$L\{kf(t)\} = kL\{f(t)\}$$

(1) The transform of a sum (or difference) of expressions is the sum (or difference) of the individual transforms. That is

$$L\{f(t) \pm g(t)\} = L\{f(t)\} \pm L\{g(t)\}$$

Theorem 1 The first shift theorem

The first shift theorem states that if $L\{f(t)\} = F(s)$ then $L\{e^{-at}f(t)\} = F(s+a)$

Because
$$L\{e^{-at}f(t)\} = \int_{t=0}^{\infty} e^{-at}f(t)e^{-st} dt = \int_{t=0}^{\infty} f(t)e^{-(s+a)t} dt = F(s+a)$$

Theorem 2 Multiplying by t and t^n

If
$$L\{f(t)\} = F(s)$$
 then $L\{tf(t)\} = -F'(s)$

Because
$$L\{tf(t)\} = \int_{t=0}^{\infty} tf(t)e^{-st} dt = \int_{t=0}^{\infty} f(t)\left(-\frac{de^{-st}}{ds}\right) dt$$
$$= -\frac{d}{ds} \int_{t=0}^{\infty} f(t)e^{-st} dt = -F'(s)$$

So, in general, if $L\{f(t)\} = F(s)$, then

$$L\{t^n f(t)\} = (-1)^n \frac{\mathrm{d}^n}{\mathrm{d}s^n} \{F(s)\}$$

Theorem 3 Dividing by t

If
$$L\{f(t)\} = F(s)$$
 then $L\left\{\frac{f(t)}{t}\right\} = \int_{\sigma=s}^{\infty} F(\sigma) d\sigma$

provided
$$\lim_{t\to 0} \left(\frac{f(t)}{t}\right)$$
 exists.

1 Standard transforms

f(t)	$L\{f(t)\} = F(s)$
а	$\frac{a}{s}$
eat	$\frac{1}{s-a}$
sin at	$\frac{a}{s^2 + a^2}$
cos at	$\frac{s}{s^2 + a^2}$
sinh at	$\frac{a}{s^2 - a^2}$
cosh at	$\frac{s}{s^2 - a^2}$
t ⁿ	$\frac{n!}{s^{n+1}}$

(n a positive integer)

- **2** Theorem 1 The first shift theorem If $L\{f(t)\} = F(s)$, then $L\{e^{-at}f(t)\} = F(s+a)$
- 3 Theorem 2 Multiplying by tIf $L\{f(t)\} = F(s)$, then $L\{tf(t)\} = -\frac{d}{ds}\{F(s)\}$
- 4 Theorem 3 Dividing by tIf $L\{f(t)\} = F(s)$, then $L\left\{\frac{f(t)}{t}\right\} = \int_{\sigma=s}^{\infty} F(\sigma) d\sigma$ provided $\lim_{t\to 0} \left\{\frac{f(t)}{t}\right\}$ exists.

Inverse transforms

Here we have the reverse process, i.e. given a Laplace transform, we have to find the function of t to which it belongs.

$$\frac{a}{s^2 + a^2}$$

$$L^{-1}\left\{\frac{a}{s^2+a^2}\right\}$$

sin at

$$L^{-1}\left\{\frac{1}{s-2}\right\}$$

 e^{2t}

$$L^{-1}\left\{\frac{s}{s^2+25}\right\}$$

 $\cos 5t$

$$L^{-1}\left\{\frac{4}{s}\right\}$$

$$L^{-1}\left\{\frac{12}{s^2-9}\right\}$$

 $4 \sinh 3t$

$$L^{-1} \left\{ \frac{3s+1}{s^2 - s - 6} \right\}$$

$$\frac{1}{s+2} + \frac{2}{s-3}$$

$$L^{-1}\left\{\frac{3s+1}{s^2-s-6}\right\} = L^{-1}\left\{\frac{1}{s+2} + \frac{2}{s-3}\right\}$$

$$e^{-2t} + 2e^{3t}$$

partial fractions

Rules of partial fractions

- 1 The numerator must be of lower degree than the denominator. This is usually the case in Laplace transforms. If it is not, then we first divide out.
- **2** Factorise the denominator into its prime factors. These determine the shapes of the partial fractions.
- 3 A linear factor (s + a) gives a partial fraction $\frac{A}{s + a}$ where A is a constant to be determined.
- **4** A repeated factor $(s+a)^2$ gives $\frac{A}{(s+a)} + \frac{B}{(s+a)^2}$.
- **5** Similarly $(s+a)^3$ gives $\frac{A}{(s+a)} + \frac{B}{(s+a)^2} + \frac{C}{(s+a)^3}$.
- **6** A quadratic factor $(s^2 + ps + q)$ gives $\frac{Ps + Q}{s^2 + ps + q}$.
- **7** Repeated quadratic factors $(s^2 + ps + q)^2$ give

$$\frac{Ps + Q}{s^2 + ps + q} + \frac{Rs + T}{(s^2 + ps + q)^2}$$
.

$$\frac{s-19}{(s+2)(s-5)}$$

$$\frac{A}{s+2} + \frac{B}{s-5}$$

$$\frac{3s^2 - 4s + 11}{(s+3)(s-2)^2}$$

$$\frac{A}{s+3} + \frac{B}{(s-2)} + \frac{C}{(s-2)^2}$$

$$L^{-1}\left\{\frac{5s+1}{s^2-s-12}\right\}$$

- (a) First we check that the numerator is of lower degree than the denominator. In fact, this is so.
 - (b) Factorise the denominator $\frac{5s+1}{s^2-s-12} = \frac{5s+1}{(s-4)(s+3)}$
 - (c) Then the partial fractions are of the form

$$\frac{A}{s-4} + \frac{B}{s+3}$$

$$\frac{5s+1}{s^2-s-12} \equiv \frac{A}{s-4} + \frac{B}{s+3}$$

$$s^2 - s - 12$$

$$(s-4)(s+3)$$

$$5s + 1 \equiv A(s + 3) + B(s - 4)$$

This is also an identity and true for any value of s

Let
$$(s-4) = 0$$
, i.e. $s = 4$

$$21 = A(7) + B(0)$$

$$A = 3$$

$$(s+3) = 0$$
, i.e. $s = -3$

$$B=2$$

$$\frac{5s+1}{s^2-s-12} = \frac{3}{s-4} + \frac{2}{s+3}$$

$$L^{-1}\left\{\frac{5s+1}{s^2-s-12}\right\}$$

$$3e^{4t} + 2e^{-3t}$$

$$L^{-1}\left\{\frac{9s-8}{s^2-2s}\right\}$$

Numerator of first degree; denonominator of second degree.

• Therefore rule satisfied.

$$\frac{9s-8}{s(s-2)} \equiv \frac{A}{s} + \frac{B}{s-2}$$

• Multiply by s(s-2)

$$9s - 8 = A(s - 2) + Bs$$
.

Put
$$s = 0$$

$$-8 = A(-2) + B(0)$$

$$A=4.$$

$$s - 2 = 0$$
, i.e. $s = 2$.

$$10 = A(0) + B(2)$$

$$B=5$$

$$f(t) = L^{-1} \left\{ \frac{4}{s} + \frac{5}{s-2} \right\} = 4 + 5e^{2t}$$

$$F(s) = \frac{s^2 - 15s + 41}{(s+2)(s-3)^2}$$

$$\frac{A}{s+2} + \frac{B}{s-3} + \frac{C}{(s-3)^2}$$

we multiply throughout by $(s+2)(s-3)^2$

$$s^2 - 15s + 41 \equiv A(s-3)^2 + B(s+2)(s-3) + C(s+2)$$

$$(s-3) = 0$$

$$(s+2) = 0$$

$$A = 3$$
 and $C = 1$

$$1 = A + B \qquad B = -2$$

$$\frac{s^2 - 15s + 41}{(s+2)(s-3)^2} = \frac{3}{s+2} - \frac{2}{s-3} + \frac{1}{(s-3)^2}$$

$$L^{-1}\left\{\frac{3}{s+2}\right\}$$

$$L^{-1}\left\{\frac{2}{s-3}\right\}$$

$$3e^{-2t}$$

$$2e^{3t}$$

$$L^{-1}\left\{\frac{1}{\left(s-3\right)^{2}}\right\}$$

$$L^{-1}\left\{\frac{1}{s^2}\right\}$$

by Theorem 1

if
$$L\{f(t)\} = F(s)$$
 then $L\{e^{-at}f(t)\} = F(s+a)$

 $\frac{1}{(s-3)^2}$ is like $\frac{1}{s^2}$ with s replaced by (s-3) i.e. a=-3.

$$L^{-1}\left\{\frac{1}{(s-3)^2}\right\} = te^{3t}$$

$$L^{-1}\left\{\frac{s^2 - 15s + 41}{(s+2)(s-3)^2}\right\} = 3e^{-2t} + 2e^{3t} + te^{3t}$$

Determine
$$L^{-1}\left\{\frac{4s^2-5s+6}{(s+1)(s^2+4)}\right\}$$
.

$$\frac{4s^2 - 5s + 6}{(s+1)(s^2+4)} \equiv \frac{A}{s+1} + \frac{Bs + C}{s^2+4}$$

$$4s^2 - 5s + 6 \equiv A(s^2 + 4) + (Bs + C)(s + 1)$$

$$(s+1) = 0$$
, i.e. $s = -1$

$$15 = 5A$$
 : $A = 3$

Equate coefficients of highest power, i.e. s^2

$$4 = A + B$$
 \therefore $4 = 3 + B$ \therefore $B = 1$

We now equate the lowest power on each side,

$$6 = 4A + C$$
 : $6 = 12 + C$: $C = -6$

$$f(t) = 3e^{-t} + \cos 2t - 3\sin 2t$$

$$L\{f(t)\} = \frac{3}{s+1} + \frac{s}{s^2+4} - \frac{6}{s^2+4}$$

$$\therefore f(t) = 3e^{-t} + \cos 2t - 3\sin 2t$$

Table of inverse transforms

F(s)	f(t)
$\frac{a}{s}$	a
$\frac{1}{s+a}$	e^{-at}
$\frac{n!}{s^{n+1}}$	t^n
$\frac{1}{s^n}$	$\frac{t^{n-1}}{(n-1)!}$
$\frac{a}{s^2 + a^2}$	sin at
$\frac{s}{s^2 + a^2}$	cosat
$\frac{a}{s^2 - a^2}$	sinh at
$\frac{s}{s^2 - a^2}$	cosh at

(*n* a positive integer)

(*n* a positive integer)

Exercise

Find the inverse transforms of

(a)
$$\frac{1}{2s-3}$$

(a)
$$\frac{1}{2s-3}$$
; (b) $\frac{5}{(s-4)^3}$; (c) $\frac{3s+4}{s^2+9}$.

(c)
$$\frac{3s+4}{s^2+9}$$

Express in partial fractions

(a)
$$\frac{22s+16}{(s+1)(s-2)(s+3)}$$
; (b) $\frac{s^2-11s+6}{(s+1)(s-2)^2}$.

(b)
$$\frac{s^2 - 11s + 6}{(s+1)(s-2)^2}$$

Determine

(a)
$$L^{-1}\left\{\frac{4s^2-17s-24}{s(s+3)(s-4)}\right\}$$
; (b) $L^{-1}\left\{\frac{5s^2-4s-7}{(s-3)(s^2+4)}\right\}$.

(b)
$$L^{-1}\left\{\frac{5s^2-4s-7}{(s-3)(s^2+4)}\right\}$$