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Laplace transforms

The Laplace transform of an expression f(t) is denoted by L{f(f)} and
is defined as the semi-infinite integral
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(2) The transform of an expression that is multiplied by a constant is the
constant multiplied by the transform of the expression. That is

L{kf ()} = KL{f ()}
(1) The transform of a sum (or difference) of expressions is the sum (or
difference) of the individual transforms. That is

L{f(t) £8(t)} = L{f (1)} + L{z(t)}



Theorem 1 The first shift theorem

The first shift theorem states that if L{f(f)} = F(s) then
L{e ™f(t)} =F(s+a)
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Theorem 2 Multiplying by t and ¢”

If L{f(t)} = F(s) then L{tf(t)} = —F(s)

Because L{tf(t)} = Jio tf(t)e ' dt = Jm f(t) (— di]:t) dt
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So, in general, if L{f(t)} = F(s), then
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Theorem 3 Dividing by ¢
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2 Theorem 1 The first shift theorem
If L{f(t)} = F(s), then L{e‘“tf(t)} =F(s+a)
3 Theorem 2 Multiplying by ¢

If L{F(1)} = F(s), then L{f(1)} = < {F(5))
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Inverse transforms

Here we have the reverse process, i.e. given a Laplace transform, we
have to find the function of ¢ to which it belongs.
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partial fractions

Rules of partial fractions

1 The numerator must be of lower degree than the denominator.
This is usually the case in Laplace transforms. If it is not, then we
first divide out.

2 Factorise the denominator into its prime factors. These determine
the shapes of the partial fractions.

3 A linear factor (s + a) gives a partial fraction sz-:;a where A is a
constant to be determined.
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Example 1

3s+1
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(a) First we check that the numerator is of lower degree than the
denominator. In fact, this is so.
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(b) Factorise the denominator

(¢) Then the partial fractions are of the form
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§% —8=12

(s —4)(s+3)

5s+1=A(s+3) +B(s — 4)

This is also an identity and true for any value of s

Let (s—4)=0,i.e.5=4

21 = A(7) + B(0)
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Example 2
9s — 8
L—l
{sz - Zs}

Numerator of first degree; denonominator of second degree.
® Therefore rule satisfied.

9 -8 A B

o 5(5—2): s+s—2

o Multiply by s(s — 2)
, 95—8=A(s—2)+Bs.
. PUr s =49

—8 = A(—2) + B(0)

A=4.
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s—2=0,1e 5=2.
10=A(0) +B(2)
B=3

f(t) :L*l{-4-+sfz} =4 + 5¢*

S
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Example 3
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we multiply throughout by (s + 2)(s — 3)*
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A=3and C=1

1=A+B B=-2
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by Theorem 1

if L{f(t)} = F(s) then L{e *f(t)} = F(s + a)

3 is like 515 with s replaced by (s — 3) i.e. a = -3.
S i
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(s+ 1)(s%2 + 4)
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45> — 55+ 6 =A(s* +4)+ (Bs+C)(s + 1)
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(s+1)=0,ie s=-1

15=84 .. A=3

Equate coefficients of highest power, i.e. s>

4=A+B . 4=34+B ..B=1
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We now equate the lowest power on each side,

6=444+C .. 6=124+C .. C=-6

f(t)=3et +cos2t — 3sin2t
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L{f(t)} =
= Py =

s 6
s+1 sz+4 s24+4

— 3¢t + cos 2t — 3 sin 2t
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Table of inverse transforms
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(n a positive integer)
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Exercise

1 Find the inverse transforms of

1 3 35+ 4
(a) m? (b) m} (9] Zi0

2 Express in partial fractions
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